We present a study of a class of effective actions which show typical axion-like interactions, and of their possible effects at the Large Hadron Collider. One important feature of these models is the presence of one pseudoscalar which is a generalization of the Peccei-Quinn axion. This can be very light and very weakly coupled, with a mass which is unrelated to its couplings to the gauge fields, described by Wess Zumino interactions. We discuss two independent realizations of these models, one derived from the theory of intersecting branes and the second one obtained by decoupling one chiral fermion per generation (one right-handed neutrino) from an anomaly-free mother theory. The key features of this second realization are illustrated using a simple example. Charge assignments of intersecting branes can be easily reproduced by the chiral decoupling approach, which remains more general at the level of the solution of its anomaly equations. Using considerations based on its lifetime, we show that in brane models the axion can be dark matter only if its mass is ultralight ($\sim 10^{-4}$ eV), while in the case of fermion decoupling it can reach the GeV region, due to the absence of fermion couplings between the heavy Higgs and the light fermion spectrum. For a GeV axion derived from brane models we present a detailed discussion of its production rates at the LHC.

Axions from intersecting branes and decoupled chiral fermions at the Large Hadron Collider

CORIANO', Claudio;GUZZI, MARCO
2009-01-01

Abstract

We present a study of a class of effective actions which show typical axion-like interactions, and of their possible effects at the Large Hadron Collider. One important feature of these models is the presence of one pseudoscalar which is a generalization of the Peccei-Quinn axion. This can be very light and very weakly coupled, with a mass which is unrelated to its couplings to the gauge fields, described by Wess Zumino interactions. We discuss two independent realizations of these models, one derived from the theory of intersecting branes and the second one obtained by decoupling one chiral fermion per generation (one right-handed neutrino) from an anomaly-free mother theory. The key features of this second realization are illustrated using a simple example. Charge assignments of intersecting branes can be easily reproduced by the chiral decoupling approach, which remains more general at the level of the solution of its anomaly equations. Using considerations based on its lifetime, we show that in brane models the axion can be dark matter only if its mass is ultralight ($\sim 10^{-4}$ eV), while in the case of fermion decoupling it can reach the GeV region, due to the absence of fermion couplings between the heavy Higgs and the light fermion spectrum. For a GeV axion derived from brane models we present a detailed discussion of its production rates at the LHC.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/374321
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact