An organic light emitting diode (OLED) emitting light downward through a transparent substrate (240) is described. The OLED embeds a microcavity (220) formed between a cathode (210) and an anode (230) and includes a plurality of organic layers comprising a light emitting layer (225). It is characterized in that the plurality of organic layers includes at least a first layer (229) made of an organic doped material aimed at enhancing the transport of holes; the plurality of organic layers also includes at least a second layer (221) made of an organic doped material aimed at enhancing the transport of electrons. The OLED is further characterized in that the anode i (230) is obtained by deposition of a semi transparent layer of silver (Ag) over the transparent substrate to be directly in contact with the first doped organic layer (229). Then, thicknesses of the first and second doped organic layers can be freely adapted to best adjust the optical characteristics of the microcavity for the wavelength of monochromatic light to be produced by the OLED.

Organic light-emitting diode with microcavity including doped organic layers and fabrication process thereof

GIGLI, Giuseppe;MAZZEO, MARCO
2010-01-01

Abstract

An organic light emitting diode (OLED) emitting light downward through a transparent substrate (240) is described. The OLED embeds a microcavity (220) formed between a cathode (210) and an anode (230) and includes a plurality of organic layers comprising a light emitting layer (225). It is characterized in that the plurality of organic layers includes at least a first layer (229) made of an organic doped material aimed at enhancing the transport of holes; the plurality of organic layers also includes at least a second layer (221) made of an organic doped material aimed at enhancing the transport of electrons. The OLED is further characterized in that the anode i (230) is obtained by deposition of a semi transparent layer of silver (Ag) over the transparent substrate to be directly in contact with the first doped organic layer (229). Then, thicknesses of the first and second doped organic layers can be freely adapted to best adjust the optical characteristics of the microcavity for the wavelength of monochromatic light to be produced by the OLED.
2010
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/374433
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact