We introduce a new family of Riemannian metrics on the three-sphere and study its geometric properties, starting from the description of their curvature. Such metrics, which include the standard metric and Berger metrics as special cases, are called “of Kaluza–Klein type”, because they are induced in a natural way by the corresponding metrics defined on the tangent sphere bundle of the two-sphere.

Geometry of Kaluza–Klein metrics on the sphere $S^3$

CALVARUSO, Giovanni;PERRONE, Domenico
2012-01-01

Abstract

We introduce a new family of Riemannian metrics on the three-sphere and study its geometric properties, starting from the description of their curvature. Such metrics, which include the standard metric and Berger metrics as special cases, are called “of Kaluza–Klein type”, because they are induced in a natural way by the corresponding metrics defined on the tangent sphere bundle of the two-sphere.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/380631
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact