Let $P$ be a linear partial differential operator with coefficients in the Gevrey class $G^s(T^n)$ where $T^n$ is the $n$-dimensional torus and $s\geq 1$. We announce that if $P$ is $s$-globally hypoelliptic in $T^n$ then its transposed operator $^t P$ is $s$-globally solvable in $T^n$, thus extending to the Gevrey classes the well-known analogous result in the corresponding $C^\infty$ class. We also give other classes of functions fro which such a result holds yet. The proof of these results and several applications will be published elsewhere.

Connection between global hypoellipticity and global solvability in Gevrey spaces

ALBANESE, Angela Anna;
2003-01-01

Abstract

Let $P$ be a linear partial differential operator with coefficients in the Gevrey class $G^s(T^n)$ where $T^n$ is the $n$-dimensional torus and $s\geq 1$. We announce that if $P$ is $s$-globally hypoelliptic in $T^n$ then its transposed operator $^t P$ is $s$-globally solvable in $T^n$, thus extending to the Gevrey classes the well-known analogous result in the corresponding $C^\infty$ class. We also give other classes of functions fro which such a result holds yet. The proof of these results and several applications will be published elsewhere.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/380781
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact