The peculiar architecture of a novel class of anisotropic TiO 2(B) nanocrystals, which were synthesized by an surfactant-assisted nonaqueous sol-gel route, was profitably exploited to fabricate highly efficient mesoporous electrodes for Li storage. These electrodes are composed of a continuous spongy network of interconnected nanoscale units with a rod-shaped profile that terminates into one or two bulgelike or branch-shaped apexes spanning areas of about 5 × 10 nm2. This architecture transcribes into a superior cycling performance (a charge capacitance of 222 mAh g-1 was achieved by a carbon-free TiO2(B)-nanorods-based electrode vs 110 mAh g-1 exhibited by a comparable TiO 2-anatase electrode) and good chemical stability (more than 90% of the initial capacity remains after 100 charging/discharging cycles). Their outstanding lithiation/delithiation capabilities were also exploited to fabricate electrochromic devices that revealed an excellent coloration efficiency (130 cm2 C-1 at 800 nm) upon the application of 1.5 V as well as an extremely fast electrochromic switching (coloration time ∼5 s)
Ultrathin TiO2(B) Nanorods with Superior Lithium-Ion Storage Performance
Roberto Giannuzzi;COZZOLI, Pantaleo Davide;GIGLI, Giuseppe
2014-01-01
Abstract
The peculiar architecture of a novel class of anisotropic TiO 2(B) nanocrystals, which were synthesized by an surfactant-assisted nonaqueous sol-gel route, was profitably exploited to fabricate highly efficient mesoporous electrodes for Li storage. These electrodes are composed of a continuous spongy network of interconnected nanoscale units with a rod-shaped profile that terminates into one or two bulgelike or branch-shaped apexes spanning areas of about 5 × 10 nm2. This architecture transcribes into a superior cycling performance (a charge capacitance of 222 mAh g-1 was achieved by a carbon-free TiO2(B)-nanorods-based electrode vs 110 mAh g-1 exhibited by a comparable TiO 2-anatase electrode) and good chemical stability (more than 90% of the initial capacity remains after 100 charging/discharging cycles). Their outstanding lithiation/delithiation capabilities were also exploited to fabricate electrochromic devices that revealed an excellent coloration efficiency (130 cm2 C-1 at 800 nm) upon the application of 1.5 V as well as an extremely fast electrochromic switching (coloration time ∼5 s)I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.