Low pressure helium/hydrocarbons mixtures are a key ingredient for next generation ultra-light drift chambers. Besides the obvious advantage of limiting the contribution to the momentum measurement due to multiple scattering, the operation at low pressure allows for a broad range of the drift chamber working parameters like drift velocity, diffusion, specific ionization and gas gain. Low pressure operation is of particular advantage for experiments where the tracking detector operates in vacuum. We present our campaign to characterize electron drift, primary ionization yield, gas gain, stability and the relative spatial resolution in helium based mixtures at absolute pressures down to 100 mbar.
Characterization of Gas Mixtures for Ultra-Light Drift Chambers
PANAREO, Marco;TASSIELLI, GIOVANNI FRANCESCO
2014-01-01
Abstract
Low pressure helium/hydrocarbons mixtures are a key ingredient for next generation ultra-light drift chambers. Besides the obvious advantage of limiting the contribution to the momentum measurement due to multiple scattering, the operation at low pressure allows for a broad range of the drift chamber working parameters like drift velocity, diffusion, specific ionization and gas gain. Low pressure operation is of particular advantage for experiments where the tracking detector operates in vacuum. We present our campaign to characterize electron drift, primary ionization yield, gas gain, stability and the relative spatial resolution in helium based mixtures at absolute pressures down to 100 mbar.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.