In this paper, a Smart Parking System (SPS) based on the integration of Ultra-High Frequency (UHF) Radio Frequency Identification (RFID) and IEEE 802.15.4 Wireless Sensor Network (WSN) technologies is presented. The system is able to collect information about the occupancy state of parking spaces, and to direct drivers to the nearest vacant parking spot by using a customized software application. Such application also leverages an NFC-based e-wallet system to allow users to pay for the parking fee. Furthermore, a software application based on RESTful Java and Google Cloud Messaging (GCM) technologies has been installed on a Central Server in order to manage alert events (e.g. improper use of a reserved space or expiration of the purchased time). In such a case, it promptly informs the traffic cops through an Android mobile app, which has been designed ad hoc for the considered scenario. A proof-of-concept has demonstrated that the proposed solution can meet the real requirements of a SPS.

Integration of RFID and WSN Technologies in a Smart Parking System

MAINETTI, LUCA;PATRONO, Luigi;STEFANIZZI, MARIA LAURA;VERGALLO, ROBERTO
2014-01-01

Abstract

In this paper, a Smart Parking System (SPS) based on the integration of Ultra-High Frequency (UHF) Radio Frequency Identification (RFID) and IEEE 802.15.4 Wireless Sensor Network (WSN) technologies is presented. The system is able to collect information about the occupancy state of parking spaces, and to direct drivers to the nearest vacant parking spot by using a customized software application. Such application also leverages an NFC-based e-wallet system to allow users to pay for the parking fee. Furthermore, a software application based on RESTful Java and Google Cloud Messaging (GCM) technologies has been installed on a Central Server in order to manage alert events (e.g. improper use of a reserved space or expiration of the purchased time). In such a case, it promptly informs the traffic cops through an Android mobile app, which has been designed ad hoc for the considered scenario. A proof-of-concept has demonstrated that the proposed solution can meet the real requirements of a SPS.
2014
9789532900514
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/387351
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 80
  • ???jsp.display-item.citation.isi??? 0
social impact