an electrochemical reactor for the preparation of self-supported comparatively thin (up to 10 μm) and large area (up to 50 cm2) anodic alumina membranes is described allowing growth of porous alumina at high applied potential (up to 150 V) without burning. Residual Al and barrier oxide beneath the porous film are dissolved through a vessel equipped with a gaskets system, which allows to expose to the dissolving solution an Al area lower than the anodised surface on the front leading to self-supported alumina membranes. According to scanning electron microscopy inspection and Hg-porosity measurements, the anodizing cell and conditions lead to the production of 25 and 50 cm2 Al2O3 porous layers with structural and morphological features very similar to those shown by commercial membranes (pore diameters 200 nm and pore densities 1012 pores/m2). The application of such large area membranes as support of inorganic proton conductors in thin film fuel cell proves their performance scalability. In the last decade, a significant
Preparation of Large Area Anodic Alumina Membranes and their Application to Thin Film Fuel Cell
BOCCHETTA, PATRIZIAWriting – Original Draft Preparation
;
2014-01-01
Abstract
an electrochemical reactor for the preparation of self-supported comparatively thin (up to 10 μm) and large area (up to 50 cm2) anodic alumina membranes is described allowing growth of porous alumina at high applied potential (up to 150 V) without burning. Residual Al and barrier oxide beneath the porous film are dissolved through a vessel equipped with a gaskets system, which allows to expose to the dissolving solution an Al area lower than the anodised surface on the front leading to self-supported alumina membranes. According to scanning electron microscopy inspection and Hg-porosity measurements, the anodizing cell and conditions lead to the production of 25 and 50 cm2 Al2O3 porous layers with structural and morphological features very similar to those shown by commercial membranes (pore diameters 200 nm and pore densities 1012 pores/m2). The application of such large area membranes as support of inorganic proton conductors in thin film fuel cell proves their performance scalability. In the last decade, a significantI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.