Objectives: The aim of the present work is the in vitro optimization of the chondral phase of an osteochondral scaffold and the analysis of the effect of the fibrin glue as embedding scaffold for the seeded chondrocytes. Methods: Fresh chondrocytes were seeded onto the scaffold by embedding them in fibrin glue or in medium as control. In the second part of the study, chondrocytes were isolated and expanded in the presence of specific growth factors; they were resuspended in fibrinogen and seeded onto the scaffold that was cultured in vitro for 1, 3 and 5 weeks in a chondrogenic medium. Results: histological and immunohistochemical data demonstrated that the presence of fibrin glue ameliorated cell distribution and survival into the chondral composite. Data from the second part of the study showed that chondrocytes’ phenotype was rescued after 3 weeks of in vitro culture and maintained for the following weeks; the biomechanical properties improved during time but they started to decrease between week 3 and 5. Conclusion: The in vitro data demonstrated that chondrocytes can grow and promote the formation of a mature cartilaginous tissue when seeded on the chondral scaffold proposed in this study; their survival and activity are ameliorated by the presence of fibrin gel as embedding scaffold and by maintaining the vitro culture for 3 weeks in the presence of specific growth factors.
Tissue engineering for cartilage repair: in vitro development of an osteochondral scaffold. Abstracts of the 3rd TERMIS (Tissue Engineering & Regenerative Medicine International Society) World Congress 2012. September 5-8, 2012. Vienna, Austria
GERVASO, FRANCESCA;SCALERA, FRANCESCA;SANNINO, Alessandro;
2012-01-01
Abstract
Objectives: The aim of the present work is the in vitro optimization of the chondral phase of an osteochondral scaffold and the analysis of the effect of the fibrin glue as embedding scaffold for the seeded chondrocytes. Methods: Fresh chondrocytes were seeded onto the scaffold by embedding them in fibrin glue or in medium as control. In the second part of the study, chondrocytes were isolated and expanded in the presence of specific growth factors; they were resuspended in fibrinogen and seeded onto the scaffold that was cultured in vitro for 1, 3 and 5 weeks in a chondrogenic medium. Results: histological and immunohistochemical data demonstrated that the presence of fibrin glue ameliorated cell distribution and survival into the chondral composite. Data from the second part of the study showed that chondrocytes’ phenotype was rescued after 3 weeks of in vitro culture and maintained for the following weeks; the biomechanical properties improved during time but they started to decrease between week 3 and 5. Conclusion: The in vitro data demonstrated that chondrocytes can grow and promote the formation of a mature cartilaginous tissue when seeded on the chondral scaffold proposed in this study; their survival and activity are ameliorated by the presence of fibrin gel as embedding scaffold and by maintaining the vitro culture for 3 weeks in the presence of specific growth factors.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.