We introduce and study H-paracontact metric manifolds, that is, paracontact metric manifolds whose Reeb vector feld \xi is harmonic. We prove that they are characterized by the condition that \xi is a Ricci eigenvector. We then investigate how harmonicity of the Reeb vector field \xi of a paracontact metric manifold is related to some other relevant geometric properties, like infinitesimal harmonic transformations and paracontact Ricci solitons.

Geometry of H-paracontact metric manifolds

CALVARUSO, Giovanni;PERRONE, Domenico
2015-01-01

Abstract

We introduce and study H-paracontact metric manifolds, that is, paracontact metric manifolds whose Reeb vector feld \xi is harmonic. We prove that they are characterized by the condition that \xi is a Ricci eigenvector. We then investigate how harmonicity of the Reeb vector field \xi of a paracontact metric manifold is related to some other relevant geometric properties, like infinitesimal harmonic transformations and paracontact Ricci solitons.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/397478
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 43
social impact