This paper presents the potentialities of a new ignition system based on exposition of multi-walled carbon nanotubes containing 75% in weight of ferrocene to a low-consumption flash camera. The experiments were performed in a constant-volume chamber equipped with an optical access, to allow the acquisition of high-speed camera images, and with a piezoresistive pressure sensor. The chamber was filled with an air-methane gaseous mixture and its combustion was triggered by flashing the nanotubes. The resulting combustion process was compared with the one obtained triggering the mixture ignition with a traditional spark plug. The combustion process was characterized for different air-methane ratios. The results show that the ignition with nanotubes determines a higher combustion pressure gradient and a higher peak pressure than spark ignition for all the tested air-methane ratios. Furthermore, high-speed camera images show that the ignition with nanotubes leads to a more distributed homogeneous-like combustion and then a faster consumption of the air-methane mixture without the formation of a discernible flame front.

Air-methane mixture ignition with Multi-Walled Carbon NanoTubes (MWCNTs) and comparison with spark ignition

CARLUCCI, Antonio Paolo;STRAFELLA, Luciano
2015-01-01

Abstract

This paper presents the potentialities of a new ignition system based on exposition of multi-walled carbon nanotubes containing 75% in weight of ferrocene to a low-consumption flash camera. The experiments were performed in a constant-volume chamber equipped with an optical access, to allow the acquisition of high-speed camera images, and with a piezoresistive pressure sensor. The chamber was filled with an air-methane gaseous mixture and its combustion was triggered by flashing the nanotubes. The resulting combustion process was compared with the one obtained triggering the mixture ignition with a traditional spark plug. The combustion process was characterized for different air-methane ratios. The results show that the ignition with nanotubes determines a higher combustion pressure gradient and a higher peak pressure than spark ignition for all the tested air-methane ratios. Furthermore, high-speed camera images show that the ignition with nanotubes leads to a more distributed homogeneous-like combustion and then a faster consumption of the air-methane mixture without the formation of a discernible flame front.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/397668
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact