Let $V$ be a vector space of dimension $n+1$. We demonstrate that $n$-component third-order Hamiltonian operators of differential-geometric type are parametrised by the algebraic variety of elements of rank $n$ in $S^2(Lambda^2V)$ that lie in the kernel of the natural map $S^2(Lambda^2V) o Lambda^4V$. Non-equivalent operators correspond to different orbits of the natural action of $SL(n+1)$. Based on this result, we obtain a classification of such operators for $nleq 4$.
Towards the classification of homogeneous third-order Hamiltonian operators
VITOLO, Raffaele
2016-01-01
Abstract
Let $V$ be a vector space of dimension $n+1$. We demonstrate that $n$-component third-order Hamiltonian operators of differential-geometric type are parametrised by the algebraic variety of elements of rank $n$ in $S^2(Lambda^2V)$ that lie in the kernel of the natural map $S^2(Lambda^2V) o Lambda^4V$. Non-equivalent operators correspond to different orbits of the natural action of $SL(n+1)$. Based on this result, we obtain a classification of such operators for $nleq 4$.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.