We consider a natural condition determining a large class of almost contact metric structures. We study their geometry, emphasizing that this class shares several properties with contact metric manifolds. We then give a complete classification of left-invariant examples on three-dimensional Lie groups, and show that any simply connected homogeneous Riemannian three-manifold $(M, g)$ admits a natural almost contact structure having $g$ as a compatible metric. Moreover, we investigate left-invariant CR structures corresponding to natural almost contact metric structures.

Natural almost contact structures and their 3D homogeneous models

CALVARUSO, Giovanni;PERRONE, ANTONELLA
2016-01-01

Abstract

We consider a natural condition determining a large class of almost contact metric structures. We study their geometry, emphasizing that this class shares several properties with contact metric manifolds. We then give a complete classification of left-invariant examples on three-dimensional Lie groups, and show that any simply connected homogeneous Riemannian three-manifold $(M, g)$ admits a natural almost contact structure having $g$ as a compatible metric. Moreover, we investigate left-invariant CR structures corresponding to natural almost contact metric structures.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/405554
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 9
social impact