We present the numerical results for the viscoelastic and adhesive contribution to rubber friction for a tread rubber sliding on a hard solid with a randomly rough surface. In particular, the effect of the high- and low-frequency roughness power spectrum cut-off is investigated. The numerical results are then compared to the predictions of an analytical theory of rubber friction. We show that the friction coefficient for large load is given exactly by the theory while some difference between theory and simulations occur for small loads, due to a finite sample-size effects, whereas the contact area is almost unaffected by the low frequency cut-off. Finally, the role of a finite rubber thickness on viscoelastic friction and contact area is introduced and critically discussed. Interestingly, we show that classical rough contact mechanics scaling rules do not apply for this case.
The effect of finite roughness size and bulk thickness on the prediction of rubber friction and contact mechanics
SCARAGGI, MICHELE;
2016-01-01
Abstract
We present the numerical results for the viscoelastic and adhesive contribution to rubber friction for a tread rubber sliding on a hard solid with a randomly rough surface. In particular, the effect of the high- and low-frequency roughness power spectrum cut-off is investigated. The numerical results are then compared to the predictions of an analytical theory of rubber friction. We show that the friction coefficient for large load is given exactly by the theory while some difference between theory and simulations occur for small loads, due to a finite sample-size effects, whereas the contact area is almost unaffected by the low frequency cut-off. Finally, the role of a finite rubber thickness on viscoelastic friction and contact area is introduced and critically discussed. Interestingly, we show that classical rough contact mechanics scaling rules do not apply for this case.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.