The need for new measurement techniques able to assess the nanofiller dispersion is still receiving great consideration when nanocomposites are developed. This occurs since different routes to disperse nanostructures generate molecular changes in polymer matrices that promote complex polymer–polymer and polymer–nanofiller interactions, which make difficult a suitable estimation of the dispersion. In this paper, ultrasonic waves at different frequencies and power were used for preparing nanocomposite samples and for evaluating the nanofiller dispersion. First, a patented method was used to disperse multiwall carbon nanotubes (MWCNTs) in polyamide 12 through extrusion assisted by low-frequency and high power ultrasound (with frequency ranging between 20 and 50 kHz). This “green” processing method was able to induce different states of dispersion of the nanofillers, as well as chemical modifications to polymer chains promoting branching reactions. Then, ultrasonic dynamic mechanical analysis (UDMA with ultrasound frequency in the megahertz range) was used to estimate the dispersion of the different nanocomposite samples. Compared to rheological measurement methods, UDMA provided a better estimation of the quality of dispersion, being sensitive both to the complex molecular architectures in polymer matrices and to the scattering due to MWCNT agglomerates.
A measure of CNTs dispersion in polymers with branched molecular architectures by UDMA
LIONETTO, Francesca;MAFFEZZOLI, Alfonso
2016-01-01
Abstract
The need for new measurement techniques able to assess the nanofiller dispersion is still receiving great consideration when nanocomposites are developed. This occurs since different routes to disperse nanostructures generate molecular changes in polymer matrices that promote complex polymer–polymer and polymer–nanofiller interactions, which make difficult a suitable estimation of the dispersion. In this paper, ultrasonic waves at different frequencies and power were used for preparing nanocomposite samples and for evaluating the nanofiller dispersion. First, a patented method was used to disperse multiwall carbon nanotubes (MWCNTs) in polyamide 12 through extrusion assisted by low-frequency and high power ultrasound (with frequency ranging between 20 and 50 kHz). This “green” processing method was able to induce different states of dispersion of the nanofillers, as well as chemical modifications to polymer chains promoting branching reactions. Then, ultrasonic dynamic mechanical analysis (UDMA with ultrasound frequency in the megahertz range) was used to estimate the dispersion of the different nanocomposite samples. Compared to rheological measurement methods, UDMA provided a better estimation of the quality of dispersion, being sensitive both to the complex molecular architectures in polymer matrices and to the scattering due to MWCNT agglomerates.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.