The spectrum and point spectrum of the Cesàro averaging operator $C$ acting on the Fréchet space $C^\infty(\R^+)$ of all $C^\infty$ functions on the interval $[0,\infty)$ are determined. We employ an approach via $C_0$-semigroup theory for linear operators. A spectral mapping theorem for the resolvent of a closed operator acting on a locally convex space is established; it constitutes a useful tool needed to establish the main result. The dynamical behaviour of $C$ is also investigated.

Dynamics and spectrum of the Cesàro operator on $C^\infty(\R^+)$

ALBANESE, Angela Anna;
2016-01-01

Abstract

The spectrum and point spectrum of the Cesàro averaging operator $C$ acting on the Fréchet space $C^\infty(\R^+)$ of all $C^\infty$ functions on the interval $[0,\infty)$ are determined. We employ an approach via $C_0$-semigroup theory for linear operators. A spectral mapping theorem for the resolvent of a closed operator acting on a locally convex space is established; it constitutes a useful tool needed to establish the main result. The dynamical behaviour of $C$ is also investigated.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/408291
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 7
social impact