We consider the problem of characterizing Sasakian manifolds of constant ϕ-sectional curvature by using the spectrum 2Spec of the Laplace-Beltrami operator acting on 2-forms. In particular, we show that the sphere S2n+1, equipped with a Berger-Sasakian metric, is characterized by its 2Spec in the class of all compact simply connected Sasakian manifolds

A characterization of Sasakian space forms by the spectrum

PERRONE, Domenico
2015-01-01

Abstract

We consider the problem of characterizing Sasakian manifolds of constant ϕ-sectional curvature by using the spectrum 2Spec of the Laplace-Beltrami operator acting on 2-forms. In particular, we show that the sphere S2n+1, equipped with a Berger-Sasakian metric, is characterized by its 2Spec in the class of all compact simply connected Sasakian manifolds
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/408320
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact