Authors aimed to provide a magnetic responsiveness to bone-mimicking nano-hydroxyapatite (n-HA). For this purpose, dextran-grafted iron oxide nanoarchitectures (DM) were synthesized by a green friendly and scalable alkaline co-precipitation method at room temperature and used to functionalize n-HA crystals. Different amounts of DM hybrid structures were added into the nanocomposites (DM/n-HA 1:1, 2:1 and 3:1weight ratio) which were investigated through extensive physicochemical (XRD, ICP, TGA and Zetapotential), microstructural (TEM and DLS), magnetic (VSM) and biological analyses (MTT proliferation assay). X-ray diffraction patterns have confirmed the n-HA formation in the presence of DM as a co-reagent. Furthermore, the addition of DM during the synthesis does not affect the primary crystallite domains of DM/n-HA nanocomposites. DM/n-HAs have shown a rising of the magnetic moment values by increasing DM content up to 2:1 ratio. However, the magnetic moment value recorded in the DM/n-HA 3:1 do not further increases showing a saturation behavior. The cytocompatibility of the DM/n-HA was evaluated with respect to the MG63 osteoblast-like cell line. Proliferation assays revealed that viability, carried out in the absence of external magnetic field, was not affected by the amount of DM employed. Interestingly, assays also suggested that the DM/n-HA nanocomposites exhibit a possible shielding effect with respect to the antiproliferative activity induced by the DM particles alone.
Simplified preparation and characterization of magnetic hydroxyapatite-based nanocomposites
PALAZZO, BARBARA;BARCA, AMILCARE;CARBONE, LUIGI;FIORE, ANGELA;MONTEDURO, ANNA GRAZIA;MARUCCIO, Giuseppe;SANNINO, Alessandro;GERVASO, FRANCESCA
2017-01-01
Abstract
Authors aimed to provide a magnetic responsiveness to bone-mimicking nano-hydroxyapatite (n-HA). For this purpose, dextran-grafted iron oxide nanoarchitectures (DM) were synthesized by a green friendly and scalable alkaline co-precipitation method at room temperature and used to functionalize n-HA crystals. Different amounts of DM hybrid structures were added into the nanocomposites (DM/n-HA 1:1, 2:1 and 3:1weight ratio) which were investigated through extensive physicochemical (XRD, ICP, TGA and Zetapotential), microstructural (TEM and DLS), magnetic (VSM) and biological analyses (MTT proliferation assay). X-ray diffraction patterns have confirmed the n-HA formation in the presence of DM as a co-reagent. Furthermore, the addition of DM during the synthesis does not affect the primary crystallite domains of DM/n-HA nanocomposites. DM/n-HAs have shown a rising of the magnetic moment values by increasing DM content up to 2:1 ratio. However, the magnetic moment value recorded in the DM/n-HA 3:1 do not further increases showing a saturation behavior. The cytocompatibility of the DM/n-HA was evaluated with respect to the MG63 osteoblast-like cell line. Proliferation assays revealed that viability, carried out in the absence of external magnetic field, was not affected by the amount of DM employed. Interestingly, assays also suggested that the DM/n-HA nanocomposites exhibit a possible shielding effect with respect to the antiproliferative activity induced by the DM particles alone.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.