The present paper deals with the pattern formation properties of a specific morpho- electrochemical reaction-diffusion model on a sphere. The physico-chemical background to this study is the morphological control of material electrodeposited onto spherical parti- cles. The particular experimental case of interest refers to the optimization of novel metal- air flow batteries and addresses the electrodeposition of zinc onto inert spherical supports. Morphological control in this step of the high-energy battery operation is crucial to the energetic efficiency of the recharge process and to the durability of the whole energy- storage device. To rationalise this technological challenge within a mathematical modeling perspective, we consider the reaction-diffusion system for metal electrodeposition intro- duced in [Bozzini et al., J. Solid State Electr.17, 467–479 (2013)] and extend its study to spherical domains. Conditions are derived for the occurrence of the Turing instability phe- nomenon and the steady patterns emerging at the onset of Turing instability are investi- gated. The reaction-diffusion system on spherical domains is solved numerically by means of the Lumped Surface Finite Element Method (LSFEM) in space combined with the IMEX Euler method in time. The effect on pattern formation of variations in the domain size is investigated both qualitatively, by means of systematic numerical simulations, and quan- titatively by introducing suitable indicators that allow to assign each pattern to a given morphological class. An experimental validation of the obtained results is finally presented for the case of zinc electrodeposition from alkaline zincate solutions onto copper spheres.

Turing pattern formation on the sphere for a morphochemical reaction-diffusion model for electrodeposition

BOZZINI, Benedetto;FRITTELLI, MASSIMO;SGURA, Ivonne
2017-01-01

Abstract

The present paper deals with the pattern formation properties of a specific morpho- electrochemical reaction-diffusion model on a sphere. The physico-chemical background to this study is the morphological control of material electrodeposited onto spherical parti- cles. The particular experimental case of interest refers to the optimization of novel metal- air flow batteries and addresses the electrodeposition of zinc onto inert spherical supports. Morphological control in this step of the high-energy battery operation is crucial to the energetic efficiency of the recharge process and to the durability of the whole energy- storage device. To rationalise this technological challenge within a mathematical modeling perspective, we consider the reaction-diffusion system for metal electrodeposition intro- duced in [Bozzini et al., J. Solid State Electr.17, 467–479 (2013)] and extend its study to spherical domains. Conditions are derived for the occurrence of the Turing instability phe- nomenon and the steady patterns emerging at the onset of Turing instability are investi- gated. The reaction-diffusion system on spherical domains is solved numerically by means of the Lumped Surface Finite Element Method (LSFEM) in space combined with the IMEX Euler method in time. The effect on pattern formation of variations in the domain size is investigated both qualitatively, by means of systematic numerical simulations, and quan- titatively by introducing suitable indicators that allow to assign each pattern to a given morphological class. An experimental validation of the obtained results is finally presented for the case of zinc electrodeposition from alkaline zincate solutions onto copper spheres.
File in questo prodotto:
File Dimensione Formato  
PostPrint_CNSNS2017.pdf

accesso aperto

Descrizione: Versione del paper accepted (post-print) della pubblicazione https://doi.org/10.1016/j.cnsns.2017.01.008
Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Creative commons
Dimensione 5.16 MB
Formato Adobe PDF
5.16 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/409376
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 49
social impact