Non-radiative Wireless power transfer (NR-WPT) is currently receiving considerable attention in very different application scenarios. To design optimum solutions, a systematic approach based on circuit theory is needed and not yet available in the literature. In this chapter, by using a network formalism, the WPT link is modeled as a two-port network and a methodology to derive an equivalent circuit is proposed. This allows to compute in a rigorous and general way the maximum achievable performance for any given WPT link. The latter can be expressed in terms of either maximum power transfer efficiency (MPTE), or maximum power delivered to the load (MPDL), or by any suitable combination of the two. This chapter provides a comprehensive theoretical and general framework to predict such performance for both inductive and capacitive coupled links. In order to facilitate a practical implementation, both impedance and admittance matrix representations are discussed and computational examples are provided.

Non-radiative Wireless Power Transmission: Theory and Applications

MONTI, GIUSEPPINA;CORCHIA, LAURA;TARRICONE, Luciano
2016-01-01

Abstract

Non-radiative Wireless power transfer (NR-WPT) is currently receiving considerable attention in very different application scenarios. To design optimum solutions, a systematic approach based on circuit theory is needed and not yet available in the literature. In this chapter, by using a network formalism, the WPT link is modeled as a two-port network and a methodology to derive an equivalent circuit is proposed. This allows to compute in a rigorous and general way the maximum achievable performance for any given WPT link. The latter can be expressed in terms of either maximum power transfer efficiency (MPTE), or maximum power delivered to the load (MPDL), or by any suitable combination of the two. This chapter provides a comprehensive theoretical and general framework to predict such performance for both inductive and capacitive coupled links. In order to facilitate a practical implementation, both impedance and admittance matrix representations are discussed and computational examples are provided.
2016
978-3-319-46809-9
978-3-319-46810-5
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/412670
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact