The classical spaces $\ell^{p+}$, $1\leq p<\infty$, and $L^{p−}$, $1<p\leq\infty$, are countably normed, reflexive Fréchet spaces in which the Cesàro operator C acts continuously. A detailed investigation is made of various operator theoretic properties of C (e.g., spectrum, point spectrum, mean ergodicity) as well as certain aspects concerning the dynamics of C (e.g., hypercyclic, supercyclic, chaos). This complements the results of [3, 4], where C was studied in the spaces ${\mathbb C}^{\mathbb N}$, $L^p_{loc}({\mathbb R}^+)$ for $1<p<\infty$ and $C({\mathbb R}^+)$, which belong to a very different collection of Fréchet spaces, called quojections; these are automatically Banach spaces whenever they admit a continuous norm.

The Cesàro operator in the Fréchet spaces $\ell^{p+}$ and $L^{p-}$

ALBANESE, Angela Anna;
2017-01-01

Abstract

The classical spaces $\ell^{p+}$, $1\leq p<\infty$, and $L^{p−}$, $1
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/414466
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 21
social impact