Both academic and industrial laboratories currently use constraint - based reconstruction methods to predict optimal genetic modifications aiming at improving the yield of chemical production. Streptomyces ambofaciens, a prolific producer of bioactive compounds has been studied with different modeling tools . The interest is linked to its ability to produce a wide range of secondary metabolites such as spiramycin, kinamycin, antimycin and stambomycins, and novel polyketides with antibacterial and antiproliferative activities. In this study, the metabolic pattern of Streptomyces ambofaciens has been globally explored: a set of candidate overexpression gene targets supposed to lead to spiramycin overproduction have been evidenced through metabolic modeling. Model predictions were experimentally validated by genetic manipulation of the ethylmalonyl-CoA metabolic node, providing evidence that spiramycin productivity may be increased by enhancing the carbon flow through this pathway. The goal was achieved by over - expressing the ccr paralog srm4 in an ad hoc engineered plasmid. The first metabolic reconstruction of S. ambofaciens and the successful experimental validation of model predictions have been described and the validity and the importance of in silico modeling tools for the overproduction of molecules with a biotechnological interest demonstrated. As a result, the proposed metabolic reconstruction represents a solid platform for the future exploitation of S. ambofaciens biotechnological potential.

In silico modeling tools for the overproduction of molecules with a biotechnological interest: experimental validation of model predictions on Streptomyces ambofaciens

DE BENEDETTO, Giuseppe, Egidio;FICO, DANIELA;ALIFANO, Pietro;DAMIANO, FABRIZIO;SICULELLA, Luisa;TALA', ADELFIA;TESTINI, MARIANGELA;
2017-01-01

Abstract

Both academic and industrial laboratories currently use constraint - based reconstruction methods to predict optimal genetic modifications aiming at improving the yield of chemical production. Streptomyces ambofaciens, a prolific producer of bioactive compounds has been studied with different modeling tools . The interest is linked to its ability to produce a wide range of secondary metabolites such as spiramycin, kinamycin, antimycin and stambomycins, and novel polyketides with antibacterial and antiproliferative activities. In this study, the metabolic pattern of Streptomyces ambofaciens has been globally explored: a set of candidate overexpression gene targets supposed to lead to spiramycin overproduction have been evidenced through metabolic modeling. Model predictions were experimentally validated by genetic manipulation of the ethylmalonyl-CoA metabolic node, providing evidence that spiramycin productivity may be increased by enhancing the carbon flow through this pathway. The goal was achieved by over - expressing the ccr paralog srm4 in an ad hoc engineered plasmid. The first metabolic reconstruction of S. ambofaciens and the successful experimental validation of model predictions have been described and the validity and the importance of in silico modeling tools for the overproduction of molecules with a biotechnological interest demonstrated. As a result, the proposed metabolic reconstruction represents a solid platform for the future exploitation of S. ambofaciens biotechnological potential.
2017
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/414484
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact