The role played by zero-point contribution in black-body radiation spectrum is investigated in connection with the presence of Casimir force. We assert that once mechanical stability for the physical system is established, there is no further role for zero-point contribution to the spectrum in full agreement with experimental evidence. As a direct consequence, Johnson–Nyquist noise in dissipative conductors, should be interpreted just in terms of thermal fluctuations only, thus neglecting quantum fluctuations predicted by [H. Callen and T. Welton, Irreversibility and generalized noise, Phys. Rev. 83 (1951) 34]. Casimir force between opposite metallic plates can be independently measured by its equilibration through application of a mechanical force and measuring it at a mechanical equilibrium.
The Puzzling of Zero-Point Energy Contribution to Black-Body Radiation Spectrum: The Role of Casimir Force
REGGIANI, LinoMembro del Collaboration Group
;ALFINITO, ELEONORAMembro del Collaboration Group
2017-01-01
Abstract
The role played by zero-point contribution in black-body radiation spectrum is investigated in connection with the presence of Casimir force. We assert that once mechanical stability for the physical system is established, there is no further role for zero-point contribution to the spectrum in full agreement with experimental evidence. As a direct consequence, Johnson–Nyquist noise in dissipative conductors, should be interpreted just in terms of thermal fluctuations only, thus neglecting quantum fluctuations predicted by [H. Callen and T. Welton, Irreversibility and generalized noise, Phys. Rev. 83 (1951) 34]. Casimir force between opposite metallic plates can be independently measured by its equilibration through application of a mechanical force and measuring it at a mechanical equilibrium.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.