The world population will be made up of a growing number of elderly people in the near future. Aged people are characterized by some physical and cognitive diseases, like mild cognitive impairment (MCI) and frailty, that, if not timely diagnosed, could turn into more severe diseases, like Alzheimer disease, thus implying high costs for treatments and cares. Information and Communication Technologies (ICTs) enabling the Internet of Things (IoT) can be adopted to create frameworks for monitoring elderly behavior which, alongside normal clinical procedures, can help geriatricians to early detect behavioral changes related to such pathologies and to provide customized interventions. As part of the City4Age project, this work describes a novel approach for collecting and managing data about elderly behavior during their normal activities.Thedata capturing layer is an unobtrusive and low-cost sensing infrastructure abstracting the heterogeneity of physical devices, while the datamanagement layer easily manages the huge quantity of sensed data, giving them semantic meaning and fostering data shareability. This work provides a functional validation of the proposed architecture and introduces how the data it manages can be used by the whole City4Age platform to early identify risks related to MCI/frailty and promptly intervene.
An IoT-Aware Architecture for Collecting and Managing Data Related to Elderly Behavior
Alessandro Fiore;Luca Mainetti;Luigi Patrono
;Piercosimo Rametta
2017-01-01
Abstract
The world population will be made up of a growing number of elderly people in the near future. Aged people are characterized by some physical and cognitive diseases, like mild cognitive impairment (MCI) and frailty, that, if not timely diagnosed, could turn into more severe diseases, like Alzheimer disease, thus implying high costs for treatments and cares. Information and Communication Technologies (ICTs) enabling the Internet of Things (IoT) can be adopted to create frameworks for monitoring elderly behavior which, alongside normal clinical procedures, can help geriatricians to early detect behavioral changes related to such pathologies and to provide customized interventions. As part of the City4Age project, this work describes a novel approach for collecting and managing data about elderly behavior during their normal activities.Thedata capturing layer is an unobtrusive and low-cost sensing infrastructure abstracting the heterogeneity of physical devices, while the datamanagement layer easily manages the huge quantity of sensed data, giving them semantic meaning and fostering data shareability. This work provides a functional validation of the proposed architecture and introduces how the data it manages can be used by the whole City4Age platform to early identify risks related to MCI/frailty and promptly intervene.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.