External bonded reinforcements (EBR), made by fibrous meshes embedded in a cementitious/hydraulic lime mortar, are getting a great deal of attention, mostly for strengthening, retrofitting and repair existing structures. In this context, the interest versus the FRCM (Fiber Reinforced Cementitious Matrix) is growing. The mechanical performance of these mortar-based reinforcements is not well known at the date and it needs to be investigated in terms of bond and tensile strength, strain and stiffness, in relation to the type of both substrate and fibers. The present work reports the results of an experimental study, still in progress, on different pre-cured GFRP grids embedded in inorganic matrices and applied on clay brick masonry. First, the mechanical properties of both pre-cured GFRP grid and GFRCM reinforcements were obtained through tensile tests. Then, the experimental investigation on bond behavior was carried out by direct shear bond test. The test results were collected and processed to evaluate bond strength, failure mode, load-slip relationship.
Experimental Analysis on Bond Behavior of GFRCM Applied on Clay Brick Masonry
Leone, M.;Rizzo, V.;Micelli, F.;Aiello, M. A.
2017-01-01
Abstract
External bonded reinforcements (EBR), made by fibrous meshes embedded in a cementitious/hydraulic lime mortar, are getting a great deal of attention, mostly for strengthening, retrofitting and repair existing structures. In this context, the interest versus the FRCM (Fiber Reinforced Cementitious Matrix) is growing. The mechanical performance of these mortar-based reinforcements is not well known at the date and it needs to be investigated in terms of bond and tensile strength, strain and stiffness, in relation to the type of both substrate and fibers. The present work reports the results of an experimental study, still in progress, on different pre-cured GFRP grids embedded in inorganic matrices and applied on clay brick masonry. First, the mechanical properties of both pre-cured GFRP grid and GFRCM reinforcements were obtained through tensile tests. Then, the experimental investigation on bond behavior was carried out by direct shear bond test. The test results were collected and processed to evaluate bond strength, failure mode, load-slip relationship.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.