In this paper we show how to solve the Maximum Weight Stable Set Problem in a claw-free graph G(V, E) with α(G)≤3 in time O(|E|log|V|). More precisely, in time O(|E|) we check whether α(G)≤3 or produce a stable set with cardinality at least 4; moreover, if α(G)≤3 we produce in time O(|E|log|V|) a maximum weight stable set of G. This improves the bound of O(|E||V|) due to Faenza, Oriolo and Stauffer.
An O(mlogn) algorithm for the weighted stable set problem in claw-free graphs with α(G)≤3
Paolo Nobili;Antonio Sassano
2017-01-01
Abstract
In this paper we show how to solve the Maximum Weight Stable Set Problem in a claw-free graph G(V, E) with α(G)≤3 in time O(|E|log|V|). More precisely, in time O(|E|) we check whether α(G)≤3 or produce a stable set with cardinality at least 4; moreover, if α(G)≤3 we produce in time O(|E|log|V|) a maximum weight stable set of G. This improves the bound of O(|E||V|) due to Faenza, Oriolo and Stauffer.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.