Surface enhanced Raman scattering (SERS) is largely used as a transduction method for analytes detection in liquid and vapor phase. In particular, SERS effect was promoted by a plethora of different metal and semiconducting nanoparticles (NPs) and silver and gold nanoparticles appear particularly suitable for this application. Nevertheless, silver nanoparticles intrinsic propensity to aggregate in large clusters reduces the possibility to use naked nanoparticles in SERS applications, for this reason they are usually functionalized with organic molecules. This approach inhibits the aggregation process but, on the other hand, reduces the surficial area of the NPs able to interact with the analyte molecules. In the present work, we propose a simple method to obtain surficial anisotropic Janus silver nanoparticles: octadecylamine was used to stabilize the nanoparticles and to promote the deposition of the silver nanoparticles on a solid substrate. The AgNPs/octadecylamine nanostructures showed the typical “hairy” Janus morphology and a strong SERS effect was observed when two biogenic amines, i. e. 2-phenylethylamine and tyramine, were fluxed on the solid film. SERS phenomenon was studied as a function both of the chemical structure of the fluxed amine and of the distance between the aromatic moiety and the nanoparticle allowing to propose the AgNPs/octadecylamine Janus nanoparticles as an active layer for the detection of phenylethylamine and tyramine in picomolar concentration.

Sub-nanomolar detection of biogenic amines by SERS effect induced by hairy Janus silver nanoparticles

Buccolieri Alessandro
Primo
Investigation
;
Bettini Simona
Secondo
Investigation
;
Salvatore Luca
Investigation
;
Baldassarre Francesca
Investigation
;
Ciccarella Giuseppe
Penultimo
Investigation
;
Giancane Gabriele
Ultimo
Supervision
2018-01-01

Abstract

Surface enhanced Raman scattering (SERS) is largely used as a transduction method for analytes detection in liquid and vapor phase. In particular, SERS effect was promoted by a plethora of different metal and semiconducting nanoparticles (NPs) and silver and gold nanoparticles appear particularly suitable for this application. Nevertheless, silver nanoparticles intrinsic propensity to aggregate in large clusters reduces the possibility to use naked nanoparticles in SERS applications, for this reason they are usually functionalized with organic molecules. This approach inhibits the aggregation process but, on the other hand, reduces the surficial area of the NPs able to interact with the analyte molecules. In the present work, we propose a simple method to obtain surficial anisotropic Janus silver nanoparticles: octadecylamine was used to stabilize the nanoparticles and to promote the deposition of the silver nanoparticles on a solid substrate. The AgNPs/octadecylamine nanostructures showed the typical “hairy” Janus morphology and a strong SERS effect was observed when two biogenic amines, i. e. 2-phenylethylamine and tyramine, were fluxed on the solid film. SERS phenomenon was studied as a function both of the chemical structure of the fluxed amine and of the distance between the aromatic moiety and the nanoparticle allowing to propose the AgNPs/octadecylamine Janus nanoparticles as an active layer for the detection of phenylethylamine and tyramine in picomolar concentration.
File in questo prodotto:
File Dimensione Formato  
sens&actuators.pdf

accesso aperto

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Creative commons
Dimensione 787.32 kB
Formato Adobe PDF
787.32 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/422576
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 28
social impact