We present a message-passing based parallel algorithm for mining Correlated Heavy Hitters from a two-dimensional data stream. To the best of our knowledge, this is the first parallel algorithm solving the problem. We show, through experimental results, that our algorithm provides very good scalability, whilst retaining the accuracy of its sequential counterpart.

Parallel Mining of Correlated Heavy Hitters

M. Pulimeno;I. Epicoco;M. Cafaro
;
C. Melle;G. Aloisio
2018-01-01

Abstract

We present a message-passing based parallel algorithm for mining Correlated Heavy Hitters from a two-dimensional data stream. To the best of our knowledge, this is the first parallel algorithm solving the problem. We show, through experimental results, that our algorithm provides very good scalability, whilst retaining the accuracy of its sequential counterpart.
2018
978-3-319-95173-7
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/424801
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact