The goal of this work is to evaluate the benefit of the hybridization of a Compact Wheel Loader (CWL) and to put into evidence the effect of the component size on its performance. To do this, a mathematical model has been developed using a backward approach, i.e. starting from the power request on a typical duty cycle made available by an industrial partner. The goals for the choice of the hybridization architecture were: minimizing fuel consumption, ensuring the simplicity of driveline and power management and ensuring compatibility with the vehicle structure.. A reduction up to 14% of fuel consumption was estimated in this investigation by combining engine downsizing with the usage of a Continuous Variable Transmission together with an optimization of the battery capacity and voltage.
Preliminary design of a hybrid electric powertrain for a earthmoving machine
Donateo T.
Methodology
;
2018-01-01
Abstract
The goal of this work is to evaluate the benefit of the hybridization of a Compact Wheel Loader (CWL) and to put into evidence the effect of the component size on its performance. To do this, a mathematical model has been developed using a backward approach, i.e. starting from the power request on a typical duty cycle made available by an industrial partner. The goals for the choice of the hybridization architecture were: minimizing fuel consumption, ensuring the simplicity of driveline and power management and ensuring compatibility with the vehicle structure.. A reduction up to 14% of fuel consumption was estimated in this investigation by combining engine downsizing with the usage of a Continuous Variable Transmission together with an optimization of the battery capacity and voltage.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.