An evolutionary paradox is the variability of the olfactory bulb size, in contrast to the other brain regions, which are sized proportionally to the peripheral function. This variability seems to be the result of selection for the olfactory function. This disagreement may derive from considering smell as a sense linked to odorous discrimination. In many vertebrates and in terrestrial and marine mammals, the sense of smell has evolved into functions related to the eco-localization. So, if the olfactory function involves spatial perception and navigation, this, couldexplain the proportional discrepancy between the olfactory bulb and olfactory cortex. Humans are able to discriminate a spatial position as a function of olfactory cues. Vice versa, in neurodegenerative syndromes the orientation capacity and olfactory perception are impaired. This leads us to think that could be a common cross-modal processing, of phylogenetic origin, which links olfactory perception and spatial orientation. Starting from these theoretical assumptions, we conducted a basic research, on 100 healthy subjects, investigating, through both behavioral and electroencephalographic data, the connection between spatial memory span and olfactory spatial memory span. Subjects were assessed through a three-condition task: normal Corsi Block Test (CBT), ‘Olfactory’ Block Test (OBT) and a ‘Semantic-Olfactory’ Block Test (SOBT). CBT consisted in a test on spatial memory span; OBT consisted in a presentation a spatial sequences of 9 different odorants (i.e., Eucalyptol, Carvone, Eugenol, Isoamyl Acetate, Geraniol, Phenethyl Alcohol, Acetophenone, Cinnamon, Hexanal) instilled on paper square not recognizable by any sign, positioned on a CBT, and showed in a spatial navigation way, and SOBT consisted of a semantic labelled of olfactory spatial navigation. A GLM repeated measure highlighted significant differences during the three conditions. Subjects had different SPANs due to different conditions. The Semantic olfactory memory SPAN was inferior respect Olfactory span and Spatial Span. Furthermore was found a significant positive correlation between the three condition. The 5 subjects with higher SPAN scores, 5 with medium scores and the 5 subjects with lower SPAN scores were recruited to investigate ERP components elicited during the cross-modal task. Subjects had to perform, during a high-density EEG recording, an olfactory task (administered through the device US2017127971 (A1) “? 2017-05-11), an EEG Posner spatial cueing task and a go/no-go olfactory semantic categorization task. The results of this study will be discussed in light of a theoretical connection between these three aspects of cortical functions that seem strongly interconnected.

A cerebral bridge from olfactory cognition to spatial navigation

Invitto, S.
;
2018-01-01

Abstract

An evolutionary paradox is the variability of the olfactory bulb size, in contrast to the other brain regions, which are sized proportionally to the peripheral function. This variability seems to be the result of selection for the olfactory function. This disagreement may derive from considering smell as a sense linked to odorous discrimination. In many vertebrates and in terrestrial and marine mammals, the sense of smell has evolved into functions related to the eco-localization. So, if the olfactory function involves spatial perception and navigation, this, couldexplain the proportional discrepancy between the olfactory bulb and olfactory cortex. Humans are able to discriminate a spatial position as a function of olfactory cues. Vice versa, in neurodegenerative syndromes the orientation capacity and olfactory perception are impaired. This leads us to think that could be a common cross-modal processing, of phylogenetic origin, which links olfactory perception and spatial orientation. Starting from these theoretical assumptions, we conducted a basic research, on 100 healthy subjects, investigating, through both behavioral and electroencephalographic data, the connection between spatial memory span and olfactory spatial memory span. Subjects were assessed through a three-condition task: normal Corsi Block Test (CBT), ‘Olfactory’ Block Test (OBT) and a ‘Semantic-Olfactory’ Block Test (SOBT). CBT consisted in a test on spatial memory span; OBT consisted in a presentation a spatial sequences of 9 different odorants (i.e., Eucalyptol, Carvone, Eugenol, Isoamyl Acetate, Geraniol, Phenethyl Alcohol, Acetophenone, Cinnamon, Hexanal) instilled on paper square not recognizable by any sign, positioned on a CBT, and showed in a spatial navigation way, and SOBT consisted of a semantic labelled of olfactory spatial navigation. A GLM repeated measure highlighted significant differences during the three conditions. Subjects had different SPANs due to different conditions. The Semantic olfactory memory SPAN was inferior respect Olfactory span and Spatial Span. Furthermore was found a significant positive correlation between the three condition. The 5 subjects with higher SPAN scores, 5 with medium scores and the 5 subjects with lower SPAN scores were recruited to investigate ERP components elicited during the cross-modal task. Subjects had to perform, during a high-density EEG recording, an olfactory task (administered through the device US2017127971 (A1) “? 2017-05-11), an EEG Posner spatial cueing task and a go/no-go olfactory semantic categorization task. The results of this study will be discussed in light of a theoretical connection between these three aspects of cortical functions that seem strongly interconnected.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/426154
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact