A g.o. manifold is a homogeneous pseudo-Riemannian manifold whose geodesics are all homogeneous, that is, they are orbits of a one-parameter group of isometries. A g.o. space is a realization of a homogeneous pseudo-Riemannian manifold (M, g) as a coset space M = G/H, such that all the geodesics are homogeneous. We prove that apart from the already classified non-reductive examples (Calvaruso et al., 2015), any four-dimensional pseudo-Riemannian g.o. manifold is naturally reductive. To obtain this result, we shall also provide a complete description up to isometries of four-dimensional pseudo-Riemannian g.o. spaces, and show explicit realizations of the four-dimensional pseudo-Riemannian naturally reductive spaces classified in Batat et al. (2015)

Four-dimensional pseudo-Riemannian g.o. spaces and manifolds

Calvaruso, Giovanni;
2018-01-01

Abstract

A g.o. manifold is a homogeneous pseudo-Riemannian manifold whose geodesics are all homogeneous, that is, they are orbits of a one-parameter group of isometries. A g.o. space is a realization of a homogeneous pseudo-Riemannian manifold (M, g) as a coset space M = G/H, such that all the geodesics are homogeneous. We prove that apart from the already classified non-reductive examples (Calvaruso et al., 2015), any four-dimensional pseudo-Riemannian g.o. manifold is naturally reductive. To obtain this result, we shall also provide a complete description up to isometries of four-dimensional pseudo-Riemannian g.o. spaces, and show explicit realizations of the four-dimensional pseudo-Riemannian naturally reductive spaces classified in Batat et al. (2015)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/426939
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact