We consider the anti-de Sitter space $H_3^1$ and the hyperbolic Hopf fibration $h : H_3^1 (1) o H_2(1)$. Using their description in terms of paraquaternions, we study the magnetic curves of the hyperbolic Hopf vector field. A complete classification is obtained for light-like magnetic curves, showing in particular the existence of periodic examples, and emphasizing their relationship with the hyperbolic Hopf fibration. Finally, we give a new interpretation of magnetic curves in $H^3_1$ using some techniques of Lie groups and Lie algebras.

Hopf magnetic curves in the anti-de Sitter space ℍ31

Calvaruso, Giovanni;
2018-01-01

Abstract

We consider the anti-de Sitter space $H_3^1$ and the hyperbolic Hopf fibration $h : H_3^1 (1) o H_2(1)$. Using their description in terms of paraquaternions, we study the magnetic curves of the hyperbolic Hopf vector field. A complete classification is obtained for light-like magnetic curves, showing in particular the existence of periodic examples, and emphasizing their relationship with the hyperbolic Hopf fibration. Finally, we give a new interpretation of magnetic curves in $H^3_1$ using some techniques of Lie groups and Lie algebras.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/427126
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact