A new sputtering ion source has been installed at CEDAD (Centre for Dating and Diagnostics) at the University of Salento in Lecce, Italy. The installation of the new ion source, capable of accepting both solid and gas samples, required significant modifications of the existing low energy injector of the accelerator mass spectrometry (AMS) system. The new ion source is connected, through an in-house designed gas handling interface, to an elemental analyzer which combusts the samples to carbon dioxide and splits the gas into an IRMS system and also to the gas feed line of the ion source. This arrangement allows the simultaneous measurement of C, N content (in the EA), carbon and nitrogen stable isotopic ratios by IRMS and radiocarbon (14C) by AMS on samples with masses in the microgram range. The results of different tests performed to find optimal operational conditions and to improve the system performances are presented. The performances of the system as a function of the diameter of the glass capillary used to feed the source and the pressure of the gas mixture in the syringe are also presented. The achievable precision and blank levels are discussed together with the results obtained in environmental studies

The new gas ion source at CEDAD: Improved performances and first 14C environmental applications

Calcagnile, Lucio;Maruccio, Lucio;Braione, Eugenia;Quarta, Gianluca
2018-01-01

Abstract

A new sputtering ion source has been installed at CEDAD (Centre for Dating and Diagnostics) at the University of Salento in Lecce, Italy. The installation of the new ion source, capable of accepting both solid and gas samples, required significant modifications of the existing low energy injector of the accelerator mass spectrometry (AMS) system. The new ion source is connected, through an in-house designed gas handling interface, to an elemental analyzer which combusts the samples to carbon dioxide and splits the gas into an IRMS system and also to the gas feed line of the ion source. This arrangement allows the simultaneous measurement of C, N content (in the EA), carbon and nitrogen stable isotopic ratios by IRMS and radiocarbon (14C) by AMS on samples with masses in the microgram range. The results of different tests performed to find optimal operational conditions and to improve the system performances are presented. The performances of the system as a function of the diameter of the glass capillary used to feed the source and the pressure of the gas mixture in the syringe are also presented. The achievable precision and blank levels are discussed together with the results obtained in environmental studies
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/427482
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact