The coastal vulnerability index (CVI) is a popular index in literature to assess the coastal vulnerability of climate change. The present paper proposes a CVI formulation to make it suitable for the Mediterranean coasts; the formulation considers ten variables divided into three typological groups: geological; physical process and vegetation. In particular, the geological variables are: geomorphology; shoreline erosion/accretion rates; coastal slope; emerged beach width and dune width. The physical process variables are relative sea-level change; mean significant wave height and mean tide range. The vegetation variables are width of vegetation behind the beach and posidonia oceanica. The first application of the proposed index was carried out for a stretch of the Apulia region coast, in the south of Italy; this application allowed to (i) identify the transects most vulnerable to sea level rise, storm surges and waves action and (ii) consider the usefulness of the index as a tool for orientation in planning strategies. For the case study presented in this work, the most influential variables in determining CVI are dune width and geomorphology. The transects that present a very high vulnerability are characterized by sandy and narrow beaches (without dunes and vegetation) and by the absence of Posidonia oceanica.
Application of a coastal vulnerability index. A case study along the Apulian Coastline, Italy
Pantusa, D.
;D'Alessandro, F.;Riefolo, L.;Principato, F.;Tomasicchio, G. R.
2018-01-01
Abstract
The coastal vulnerability index (CVI) is a popular index in literature to assess the coastal vulnerability of climate change. The present paper proposes a CVI formulation to make it suitable for the Mediterranean coasts; the formulation considers ten variables divided into three typological groups: geological; physical process and vegetation. In particular, the geological variables are: geomorphology; shoreline erosion/accretion rates; coastal slope; emerged beach width and dune width. The physical process variables are relative sea-level change; mean significant wave height and mean tide range. The vegetation variables are width of vegetation behind the beach and posidonia oceanica. The first application of the proposed index was carried out for a stretch of the Apulia region coast, in the south of Italy; this application allowed to (i) identify the transects most vulnerable to sea level rise, storm surges and waves action and (ii) consider the usefulness of the index as a tool for orientation in planning strategies. For the case study presented in this work, the most influential variables in determining CVI are dune width and geomorphology. The transects that present a very high vulnerability are characterized by sandy and narrow beaches (without dunes and vegetation) and by the absence of Posidonia oceanica.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.