A concept of Air-Cooled Heat Pump (ACHP) coupled with a Horizontal Air-Ground Heat Exchanger (HAGHE), also called Horizontal Earth-To-Air Heat Exchanger (EAHX), has been proposed. The Air-Cooled Heat Pump is a system which transfers heat from outside source (air) to inside sink (water) and vice versa in summertime. The innovation is to provide a geothermal treatment of pre-heating/cooling of air before meeting the evaporator in winter or the condenser in summer of the heat pump. Besides, it is known that the variations of the ground temperature, respect to the external air one, are mitigated already in the first layers of the ground throughout the year, due to the high thermal inertia of the ground, letting the heat pump work with more mitigated conditions, improving the performances. The behaviour of HAGHE has been investigated by varying the length and the installation depth of the probes, the air flow rate and the ground thermal properties. All the combinations have been implemented using TRNSYS 17 software (Transient System Simulation Program) to obtain the outlet temperatures from HAGHE, resulting from the 54 configurations. The results are compared in terms of Coefficient of Performance (COP) in wintertime and Energy Efficiency Ratio (EER) in summertime between configurations with and without the coupling with HAGHE. In addition, two seasonal performance SCOP and SEER coefficients have been calculated considering, not only the inlet air temperatures into the Air-Cooled Heat Pump, but also their frequency of occurrence, the off-set external temperature (16 C), the nominal external temperature and heating and cooling loads.

Performance Analysis of Air Cooled Heat Pump Coupled with Horizontal Air Ground Heat Exchanger in the Mediterranean Climate

Baglivo, Cristina;Congedo, Paolo Maria
2018-01-01

Abstract

A concept of Air-Cooled Heat Pump (ACHP) coupled with a Horizontal Air-Ground Heat Exchanger (HAGHE), also called Horizontal Earth-To-Air Heat Exchanger (EAHX), has been proposed. The Air-Cooled Heat Pump is a system which transfers heat from outside source (air) to inside sink (water) and vice versa in summertime. The innovation is to provide a geothermal treatment of pre-heating/cooling of air before meeting the evaporator in winter or the condenser in summer of the heat pump. Besides, it is known that the variations of the ground temperature, respect to the external air one, are mitigated already in the first layers of the ground throughout the year, due to the high thermal inertia of the ground, letting the heat pump work with more mitigated conditions, improving the performances. The behaviour of HAGHE has been investigated by varying the length and the installation depth of the probes, the air flow rate and the ground thermal properties. All the combinations have been implemented using TRNSYS 17 software (Transient System Simulation Program) to obtain the outlet temperatures from HAGHE, resulting from the 54 configurations. The results are compared in terms of Coefficient of Performance (COP) in wintertime and Energy Efficiency Ratio (EER) in summertime between configurations with and without the coupling with HAGHE. In addition, two seasonal performance SCOP and SEER coefficients have been calculated considering, not only the inlet air temperatures into the Air-Cooled Heat Pump, but also their frequency of occurrence, the off-set external temperature (16 C), the nominal external temperature and heating and cooling loads.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/427858
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact