The present study aimed to develop and optimize liposome formulation for the colonic delivery of biologically active compounds. A strategy to facilitate such targeting is to formulate liposomes with a polymer coating sensitive to the pH shifts in the gastrointestinal tract. To this end, liposomes encapsulating curcumin—chosen as the biologically active compound model—and coated with the pH-responsive polymer Eudragit S100 were prepared and characterized. Curcumin was encapsulated into small unilamellar vesicles (SUVs) by the micelle-to-vesicle transition method (MVT) in a simple and organic solvent-free way. Curcumin-loaded liposomes were coated with Eudragit S100 by a fast and easily scalable pH-driven method. The prepared liposomes were evaluated for size, surface morphology, entrapment efficiency, stability, in vitro drug release, and curcumin antioxidant activity. In particular, curcumin-loaded liposomes displayed size lower than 100 nm, encapsulation efficiency of 98%, high stability at both 4 °C and 25 °C, high in vitro antioxidant activity, and a cumulative release that was completed within 200 min. A good Eudragit S100 coating which did not alter the properties of the curcumin-loaded liposomes was obtained. The present work therefore provides a fast and solvent-free method to prepare pH-responsive polymer-coated liposomes for the colonic delivery of biologically active compounds.

Encapsulation of curcumin-loaded liposomes for colonic drug delivery in a pH-responsive polymer cluster using a pH-driven and organic solvent-free process

Milano, Francesco
Membro del Collaboration Group
;
Giotta, Livia
Membro del Collaboration Group
;
2018-01-01

Abstract

The present study aimed to develop and optimize liposome formulation for the colonic delivery of biologically active compounds. A strategy to facilitate such targeting is to formulate liposomes with a polymer coating sensitive to the pH shifts in the gastrointestinal tract. To this end, liposomes encapsulating curcumin—chosen as the biologically active compound model—and coated with the pH-responsive polymer Eudragit S100 were prepared and characterized. Curcumin was encapsulated into small unilamellar vesicles (SUVs) by the micelle-to-vesicle transition method (MVT) in a simple and organic solvent-free way. Curcumin-loaded liposomes were coated with Eudragit S100 by a fast and easily scalable pH-driven method. The prepared liposomes were evaluated for size, surface morphology, entrapment efficiency, stability, in vitro drug release, and curcumin antioxidant activity. In particular, curcumin-loaded liposomes displayed size lower than 100 nm, encapsulation efficiency of 98%, high stability at both 4 °C and 25 °C, high in vitro antioxidant activity, and a cumulative release that was completed within 200 min. A good Eudragit S100 coating which did not alter the properties of the curcumin-loaded liposomes was obtained. The present work therefore provides a fast and solvent-free method to prepare pH-responsive polymer-coated liposomes for the colonic delivery of biologically active compounds.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/429516
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 89
  • ???jsp.display-item.citation.isi??? 81
social impact