High temperature (HT) stress is one of the most important environmental stimuli, negatively affecting plant survival and crop yield. Basal and acquired thermotolerance (ATT) are two components of plant response to HT, the mechanisms controlling them are not completely known yet. Basal thermotolerance was evaluated in a collection of 47 Triticum turgidum and Triticum durum genotypes, by the cell membrane stability (CMS) test, observing high variability. T. turgidum accessions exhibited the highest CMS values corresponding to higher thermotolerance, while T. durum cultivars (cvs) exhibited lower CMS values. The heat shock response is characterized by the synthesis of heat shock proteins (HSPs), and variation in HSPs production may be related to variation in ATT. The expression of HSP genes (coding cytoplasmic and plastidial small HSPs and two members of HSP70 family), previously hypothesized to be correlated with thermotolerance, was evaluated in thermotolerant and thermosensitive genotypes grown in the field, in control and HT conditions. The results obtained suggest that the genes coding for the two members of HSP70 family, may be responsible for basal thermotolerance. The overall results suggest that wild genotypes may possess a yet undisclosed variability for alleles involved in thermotolerance.
Wild and cultivated Triticum species differ in thermotolerant habit and HSP gene expression
Rampino, Patrizia;De Pascali, Mariarosaria;De Caroli, Monica;Perrotta, Carla
2019-01-01
Abstract
High temperature (HT) stress is one of the most important environmental stimuli, negatively affecting plant survival and crop yield. Basal and acquired thermotolerance (ATT) are two components of plant response to HT, the mechanisms controlling them are not completely known yet. Basal thermotolerance was evaluated in a collection of 47 Triticum turgidum and Triticum durum genotypes, by the cell membrane stability (CMS) test, observing high variability. T. turgidum accessions exhibited the highest CMS values corresponding to higher thermotolerance, while T. durum cultivars (cvs) exhibited lower CMS values. The heat shock response is characterized by the synthesis of heat shock proteins (HSPs), and variation in HSPs production may be related to variation in ATT. The expression of HSP genes (coding cytoplasmic and plastidial small HSPs and two members of HSP70 family), previously hypothesized to be correlated with thermotolerance, was evaluated in thermotolerant and thermosensitive genotypes grown in the field, in control and HT conditions. The results obtained suggest that the genes coding for the two members of HSP70 family, may be responsible for basal thermotolerance. The overall results suggest that wild genotypes may possess a yet undisclosed variability for alleles involved in thermotolerance.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.