The symmetry algebra of the real elliptic Liouville equation is an infinite-dimensional loop algebra with the simple Lie algebra o(3, 1) as its maximal finite-dimensional subalgebra. The entire algebra generates the conformal group of the Euclidean plane E2. This infinite-dimensional algebra distinguishes the elliptic Liouville equation from the hyperbolic one with its symmetry algebra that is the direct sum of two Virasoro algebras. Following a previously developed discretization procedure, we present a difference scheme that is invariant under the group O(3, 1) and has the elliptic Liouville equation in polar coordinates as its continuous limit. The lattice is a solution of an equation invariant under O(3, 1) and is itself invariant under a subgroup of O(3, 1), namely, the O(2) rotations of the Euclidean plane.

Conformally Invariant Elliptic Liouville Equation and Its Symmetry-Preserving Discretization

LEVI, DECIO
Membro del Collaboration Group
;
L. Martina
Membro del Collaboration Group
;
2018-01-01

Abstract

The symmetry algebra of the real elliptic Liouville equation is an infinite-dimensional loop algebra with the simple Lie algebra o(3, 1) as its maximal finite-dimensional subalgebra. The entire algebra generates the conformal group of the Euclidean plane E2. This infinite-dimensional algebra distinguishes the elliptic Liouville equation from the hyperbolic one with its symmetry algebra that is the direct sum of two Virasoro algebras. Following a previously developed discretization procedure, we present a difference scheme that is invariant under the group O(3, 1) and has the elliptic Liouville equation in polar coordinates as its continuous limit. The lattice is a solution of an equation invariant under O(3, 1) and is itself invariant under a subgroup of O(3, 1), namely, the O(2) rotations of the Euclidean plane.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/430856
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact