A procedure for evaluating the risk related to the use of unmanned aerial systems over populated areas is proposed. A nominal trajectory, planned for performing a given mission, is represented by means of motion primitives, that is segments and arcs flown in a steady-state condition. The risk of hitting a person on the ground after catastrophic failure is evaluated as a function of vehicle reliability and population density (assumed known), and position of the impact point (which depends on initial conditions at the time of failure and trajectory flown afterwards). In the deterministic case, a lethal area is introduced and the risk at each point on the ground is proportional to the amount of time spent by the point inside the lethal area. Under the assumptions of a ballistic fall, the position of the lethal area with respect to the nominal trajectory depends only on altitude and velocity at the time of failure. When the effect of navigation errors is introduced, impact points are described by a statistical impact footprint, assuming that position and velocity errors at time of failure are normally distributed with known standard deviations. The two approaches are compared for a fictitious, yet realistic, mission scenario.

Risk assessment in mission planning of uninhabited aerial vehicles

Avanzini G.
Primo
Membro del Collaboration Group
;
2019-01-01

Abstract

A procedure for evaluating the risk related to the use of unmanned aerial systems over populated areas is proposed. A nominal trajectory, planned for performing a given mission, is represented by means of motion primitives, that is segments and arcs flown in a steady-state condition. The risk of hitting a person on the ground after catastrophic failure is evaluated as a function of vehicle reliability and population density (assumed known), and position of the impact point (which depends on initial conditions at the time of failure and trajectory flown afterwards). In the deterministic case, a lethal area is introduced and the risk at each point on the ground is proportional to the amount of time spent by the point inside the lethal area. Under the assumptions of a ballistic fall, the position of the lethal area with respect to the nominal trajectory depends only on altitude and velocity at the time of failure. When the effect of navigation errors is introduced, impact points are described by a statistical impact footprint, assuming that position and velocity errors at time of failure are normally distributed with known standard deviations. The two approaches are compared for a fictitious, yet realistic, mission scenario.
File in questo prodotto:
File Dimensione Formato  
RiskAssessUAS_REV.pdf

accesso aperto

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Creative commons
Dimensione 1 MB
Formato Adobe PDF
1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/435528
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 5
social impact