Recent studies have shown that marine algae represent a great source of natural compounds with several properties. The lipidic extract of the seaweed Chaetomorpha linum (Chlorophyta, Cladophorales), one of the dominant species in the Mar Piccolo of Taranto (Mediterranean, Ionian Sea), revealed an antibacterial activity against Vibrio ordalii and Vibrio vulnificus, common pathogens in aquaculture, suggesting its potential employment to control fish and shellfish diseases due to vibriosis and to reduce the public health hazards related to antibiotic use in aquaculture. This extract showed also an antioxidant activity, corresponding to 170.960 16. mmol Trolox equivalent/g (oxygen radical absorbance capacity assay-ORAC) and to 30.554 2.30 mmol Trolox equivalent/g (Trolox equivalent antioxidant capacity assay-TEAC). The chemical characterization of the extract, performed by 1D and 2D NMR spectroscopy, highlighted the presence of free, saturated (SAFAs), unsaturated (UFAs) and polyunsaturated (PUFAs) fatty acids. The high content of !-6 and !-3 PUFAs confirmed also by gas chromatography indicates the potentiality of this algal species in the production of fortified food. The antibacterial activity seems related to the presence of linolenic acid present at high density, while the antioxidant activity could be likely ascribable to molecules such as carotenoids and chlorophylls (characterized also by thin-layer chromatography), known for this property. The presence of polyhydroxybutyrate, a biopolymer with potentiality in the field of biodegradable bioplastics was also detected. The exploitation of C. linum for a future biotechnological application is also encouraged by the results from a first attempt of cultivating this species in an integrated multi-trophic aquaculture (IMTA) system.

Screening of chaetomorpha linum lipidic extract as a new potential source of bioactive compounds

Stabili L.
;
Angile F.;Del Coco L.;Fanizzi F. P.;
2019-01-01

Abstract

Recent studies have shown that marine algae represent a great source of natural compounds with several properties. The lipidic extract of the seaweed Chaetomorpha linum (Chlorophyta, Cladophorales), one of the dominant species in the Mar Piccolo of Taranto (Mediterranean, Ionian Sea), revealed an antibacterial activity against Vibrio ordalii and Vibrio vulnificus, common pathogens in aquaculture, suggesting its potential employment to control fish and shellfish diseases due to vibriosis and to reduce the public health hazards related to antibiotic use in aquaculture. This extract showed also an antioxidant activity, corresponding to 170.960 16. mmol Trolox equivalent/g (oxygen radical absorbance capacity assay-ORAC) and to 30.554 2.30 mmol Trolox equivalent/g (Trolox equivalent antioxidant capacity assay-TEAC). The chemical characterization of the extract, performed by 1D and 2D NMR spectroscopy, highlighted the presence of free, saturated (SAFAs), unsaturated (UFAs) and polyunsaturated (PUFAs) fatty acids. The high content of !-6 and !-3 PUFAs confirmed also by gas chromatography indicates the potentiality of this algal species in the production of fortified food. The antibacterial activity seems related to the presence of linolenic acid present at high density, while the antioxidant activity could be likely ascribable to molecules such as carotenoids and chlorophylls (characterized also by thin-layer chromatography), known for this property. The presence of polyhydroxybutyrate, a biopolymer with potentiality in the field of biodegradable bioplastics was also detected. The exploitation of C. linum for a future biotechnological application is also encouraged by the results from a first attempt of cultivating this species in an integrated multi-trophic aquaculture (IMTA) system.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/436281
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? ND
social impact