Maculinea (=Phengaris) are endangered butterflies that are characterized by a very complex biological cycle. Maculinea larvae behave as obligate parasites whose survival is strictly dependent on both particular food plants and species-specific Myrmica ants. In this interaction, Maculinea caterpillars induce Myrmica workers to retrieve and rear them in the nest by chemical and acoustic deception. Social insect symbiotic microorganisms play a key role in intraspecific and interspecific communication; therefore, it is possible that the Maculinea caterpillar microbiome might be involved in the chemical cross-talk by producing deceptive semiochemicals for host ants. To address this point, the microbiota of Maculinea alcon at different larval stages (phytophagous early larvae, intermediate larvae, carnivorous late larvae) was analyzed by using 16S rRNA-guided metabarcoding approach and compared to that of the host ant Myrmica scabrinodis. Structural and deduced functional profiles of the microbial communities were recorded, which were used to identify specific groups of microorganisms that may be involved in the chemical cross-talk. One of the most notable features was the presence in all larval stages and in the ants of two bacteria, Serratia marcescens and S. entomophila, which are involved in the chemical cross-talk between the microbes and their hosts.
The Microbiome of the Maculinea-Myrmica Host-Parasite Interaction
Di Salvo M.;Calcagnile M.;Tala A.;Tredici S. M.;Alifano P.
2019-01-01
Abstract
Maculinea (=Phengaris) are endangered butterflies that are characterized by a very complex biological cycle. Maculinea larvae behave as obligate parasites whose survival is strictly dependent on both particular food plants and species-specific Myrmica ants. In this interaction, Maculinea caterpillars induce Myrmica workers to retrieve and rear them in the nest by chemical and acoustic deception. Social insect symbiotic microorganisms play a key role in intraspecific and interspecific communication; therefore, it is possible that the Maculinea caterpillar microbiome might be involved in the chemical cross-talk by producing deceptive semiochemicals for host ants. To address this point, the microbiota of Maculinea alcon at different larval stages (phytophagous early larvae, intermediate larvae, carnivorous late larvae) was analyzed by using 16S rRNA-guided metabarcoding approach and compared to that of the host ant Myrmica scabrinodis. Structural and deduced functional profiles of the microbial communities were recorded, which were used to identify specific groups of microorganisms that may be involved in the chemical cross-talk. One of the most notable features was the presence in all larval stages and in the ants of two bacteria, Serratia marcescens and S. entomophila, which are involved in the chemical cross-talk between the microbes and their hosts.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.