The development of new synthetic biology frontiers has led to scenarios where the embodied information-processing capability of biological organisms are implanted, in minimalistic version, in liposome-based synthetic cells. These are cell-like systems of minimal complexity resembling biological cells. Although not yet alive, synthetic cells are useful for generating basic biological understanding, and can become interesting biotechnological tools. In 2012 we devised a research program aimed at the design and construction of synthetic cells capable of exchanging chemical signals with biological micro-organisms (in particular bacteria). Here we review the fundamental steps leading to this innovative research field and comment on the most relevant experimental results obtained by us and others.
Chemical exchanges and actuation in liposome-based synthetic cells: Interaction with biological cells
Stano P.
2019-01-01
Abstract
The development of new synthetic biology frontiers has led to scenarios where the embodied information-processing capability of biological organisms are implanted, in minimalistic version, in liposome-based synthetic cells. These are cell-like systems of minimal complexity resembling biological cells. Although not yet alive, synthetic cells are useful for generating basic biological understanding, and can become interesting biotechnological tools. In 2012 we devised a research program aimed at the design and construction of synthetic cells capable of exchanging chemical signals with biological micro-organisms (in particular bacteria). Here we review the fundamental steps leading to this innovative research field and comment on the most relevant experimental results obtained by us and others.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.