This paper proposes a novel approach to robust radar detection of range-spread targets embedded in Gaussian noise with unknown covariance matrix. The idea is to model the useful target echo in each range cell as the sum of a coherent signal plus a random component that makes the signal-plus-noise hypothesis more plausible in presence of mismatches. Moreover, an unknown power of the random components, to be estimated from the observables, is inserted to optimize the performance when the mismatch is absent. The generalized likelihood ratio test (GLRT) for the problem at hand is considered. In addition, a new parametric detector that encompasses the GLRT as a special case is also introduced and assessed. The performance assessment shows the effectiveness of the idea also in comparison to natural competitors.

A novel approach to robust radar detection of range-spread targets

Coluccia A.;Fascista A.;Ricci G.
2020-01-01

Abstract

This paper proposes a novel approach to robust radar detection of range-spread targets embedded in Gaussian noise with unknown covariance matrix. The idea is to model the useful target echo in each range cell as the sum of a coherent signal plus a random component that makes the signal-plus-noise hypothesis more plausible in presence of mismatches. Moreover, an unknown power of the random components, to be estimated from the observables, is inserted to optimize the performance when the mismatch is absent. The generalized likelihood ratio test (GLRT) for the problem at hand is considered. In addition, a new parametric detector that encompasses the GLRT as a special case is also introduced and assessed. The performance assessment shows the effectiveness of the idea also in comparison to natural competitors.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/436621
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 14
social impact