We consider a 3rd-order generalized Monge-Ampère equa- tion u yyy − u 2 xxy + u xxx u xyy = 0 (which is closely related to the asso- ciativity equation in the 2-d topological field theory) and describe all integrable structures related to it (i.e., Hamiltonian, symplectic, and re- cursion operators). Infinite hierarchies of symmetries and conservation laws are constructed as well.

Integrable structures for a generalized Monge-Ampère equation

Vitolo, R.;
2012-01-01

Abstract

We consider a 3rd-order generalized Monge-Ampère equa- tion u yyy − u 2 xxy + u xxx u xyy = 0 (which is closely related to the asso- ciativity equation in the 2-d topological field theory) and describe all integrable structures related to it (i.e., Hamiltonian, symplectic, and re- cursion operators). Infinite hierarchies of symmetries and conservation laws are constructed as well.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/438790
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact