We introduce the notion of a “quantum structure” on an Einstein general rela- tivistic classical spacetime M . It consists of a line bundle over M equipped with a connection fulfilling certain conditions. We give a necessary and sufficient condition for the existence of quantum structures, and classify them. The existence and classifi- cation results are analogous to those of geometric quantisation (Kostant and Souriau), but they involve the topology of spacetime, rather than the topology of the configura- tion space. We provide physically relevant examples, such as the Dirac monopole, the Aharonov–Bohm effect and the Kerr–Newman spacetime.

Quantum structures in Einstein general relativity

Vitolo, Raffaele
2000-01-01

Abstract

We introduce the notion of a “quantum structure” on an Einstein general rela- tivistic classical spacetime M . It consists of a line bundle over M equipped with a connection fulfilling certain conditions. We give a necessary and sufficient condition for the existence of quantum structures, and classify them. The existence and classifi- cation results are analogous to those of geometric quantisation (Kostant and Souriau), but they involve the topology of spacetime, rather than the topology of the configura- tion space. We provide physically relevant examples, such as the Dirac monopole, the Aharonov–Bohm effect and the Kerr–Newman spacetime.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/438791
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact