Perylene bisimide derivatives show peculiar physical chemical features, such as a highly conjugated system, high extinction coefficients and elevated fluorescence quantum yields, making them suitable for the development of optical sensors of compounds of interest. In particular, they are characterized by the tendency to aggregate into πstacked supramolecular structures. In this contribution, the behavior of the PBI derivative N,N′-bis(2-(trimethylammonium)ethylene)perylene bisimide dichloride was investigated both in aqueous solution and on solid support. The electronic communication between PBI aggregates and biogenic amines was exploited in order to discriminate aromatic amines down to subnanomolar concentrations by observing PBI fluorescence variations in the presence of various amines and at different concentrations. The experimental findings were corroborated by density functional theory calculations. In particular, phenylethylamine and tyramine were demonstrated to be selectively detected down to 10 -10 M concentration. Then, in order to develop a surface plasmon resonance (SPR) device, PBI was deposited onto a SPR support by means of the layer-by-layer method. PBI was deposited in the aggregated form and was demonstrated to preserve the capability to discriminate, selectively and with an outstanding analytical sensitivity, tyramine in the vapor phase and even if mixed with other aromatic amines.

Perylene Bisimide Aggregates as Probes for Subnanomolar Discrimination of Aromatic Biogenic Amines

Bettini S.;Pagano R.;Salvatore L.;Giancane G.;Valli L.
2019-01-01

Abstract

Perylene bisimide derivatives show peculiar physical chemical features, such as a highly conjugated system, high extinction coefficients and elevated fluorescence quantum yields, making them suitable for the development of optical sensors of compounds of interest. In particular, they are characterized by the tendency to aggregate into πstacked supramolecular structures. In this contribution, the behavior of the PBI derivative N,N′-bis(2-(trimethylammonium)ethylene)perylene bisimide dichloride was investigated both in aqueous solution and on solid support. The electronic communication between PBI aggregates and biogenic amines was exploited in order to discriminate aromatic amines down to subnanomolar concentrations by observing PBI fluorescence variations in the presence of various amines and at different concentrations. The experimental findings were corroborated by density functional theory calculations. In particular, phenylethylamine and tyramine were demonstrated to be selectively detected down to 10 -10 M concentration. Then, in order to develop a surface plasmon resonance (SPR) device, PBI was deposited onto a SPR support by means of the layer-by-layer method. PBI was deposited in the aggregated form and was demonstrated to preserve the capability to discriminate, selectively and with an outstanding analytical sensitivity, tyramine in the vapor phase and even if mixed with other aromatic amines.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/439197
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 38
social impact