In this paper we employ genetic algorithms in order to theoretically design a range of phononic media that can act to prevent or ensure antiplane elastic wave propagation over a specific range of low frequencies, with each case corresponding to a specific pre-stress level. The medium described consists of an array of cylindrical annuli embedded inside an elastic matrix. The annuli are considered as capable of large strain and their constitutive response is described by the popular Mooney–Rivlin strain energy function. The simple nature of the medium described is an alternative approach to topology optimization in phononic media, which although useful, often gives rise to complex phase distributions inside a composite material, leading to more complicated manufacturing requirements.
Optimal design of phononic media through genetic algorithm-informed pre-stress for the control of antiplane wave propagation
De Pascalis R.;Donateo T.Methodology
;Ficarella A.;
2020-01-01
Abstract
In this paper we employ genetic algorithms in order to theoretically design a range of phononic media that can act to prevent or ensure antiplane elastic wave propagation over a specific range of low frequencies, with each case corresponding to a specific pre-stress level. The medium described consists of an array of cylindrical annuli embedded inside an elastic matrix. The annuli are considered as capable of large strain and their constitutive response is described by the popular Mooney–Rivlin strain energy function. The simple nature of the medium described is an alternative approach to topology optimization in phononic media, which although useful, often gives rise to complex phase distributions inside a composite material, leading to more complicated manufacturing requirements.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.