The present work provides a numerical investigation of the supersonic flow inside a planar micronozzle configuration under different gas rarefaction conditions. Two different propellants have been considered, namely water vapor and nitrogen, which relate to their use in VLMs (the former) and cold gas microthrusters (the latter), respectively. Furthermore, two different numerical approaches have been used due to the different gas rarefaction regime, i.e. the typical continuum Navier–Stokes with partial slip assumption at walls and the particle–based Direct Simulation Monte Carlo (DSMC) technique. As a result, under high–pressure operating conditions, both water and nitrogen flows supersonically expanded into the micronozzle without chocking in combination with a linear growth of the boundary layer on walls. However, when low–pressure operating condition are imposed and a molecular regime is established inside the micronozzle, a very rapid expansion occurred close to the nozzle exit in combination with a strong chocking of the flow and a micronozzle quality reduction of about 40%. Furthermore, water exhibited specific higher specific impulse than nitrogen above 60%.
Comparison of numerical predictions of the supersonic expansion inside micronozzles of micro-resistojets
De Giorgi M. G.;Fontanarosa D.;Ficarella Antonio
2019-01-01
Abstract
The present work provides a numerical investigation of the supersonic flow inside a planar micronozzle configuration under different gas rarefaction conditions. Two different propellants have been considered, namely water vapor and nitrogen, which relate to their use in VLMs (the former) and cold gas microthrusters (the latter), respectively. Furthermore, two different numerical approaches have been used due to the different gas rarefaction regime, i.e. the typical continuum Navier–Stokes with partial slip assumption at walls and the particle–based Direct Simulation Monte Carlo (DSMC) technique. As a result, under high–pressure operating conditions, both water and nitrogen flows supersonically expanded into the micronozzle without chocking in combination with a linear growth of the boundary layer on walls. However, when low–pressure operating condition are imposed and a molecular regime is established inside the micronozzle, a very rapid expansion occurred close to the nozzle exit in combination with a strong chocking of the flow and a micronozzle quality reduction of about 40%. Furthermore, water exhibited specific higher specific impulse than nitrogen above 60%.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.