In this paper we prove that a global $omega$-hypoelliptic vector field on the torus $T^n$ can be transformed by a $mathcall{E}_omega}-diffeomorphism of $T^n$ into a vector field with constant coefficients which satisfy a Diophantine condition in terms of the weight function $omega$. Thereby, we extend previous work by Chen and Chi to a bigger scale of spaces, namely, in the setting of ultradifferentiable classes and ultradistributions of Beurling and Roumieu type.

Global hypoelliptic vector fields in ultradifferentiable classes and normal forms

Angela A. Albanese
Investigation
2020-01-01

Abstract

In this paper we prove that a global $omega$-hypoelliptic vector field on the torus $T^n$ can be transformed by a $mathcall{E}_omega}-diffeomorphism of $T^n$ into a vector field with constant coefficients which satisfy a Diophantine condition in terms of the weight function $omega$. Thereby, we extend previous work by Chen and Chi to a bigger scale of spaces, namely, in the setting of ultradifferentiable classes and ultradistributions of Beurling and Roumieu type.
File in questo prodotto:
File Dimensione Formato  
AlbaneseJMAA2020.pdf

solo utenti autorizzati

Descrizione: Articolo
Tipologia: Versione editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 469.33 kB
Formato Adobe PDF
469.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/441131
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact