The aim of the present work is the investigation of the combustion phenomenon in liquid-propellant rocket engines. The combustion of liquid oxygen and gaseous methane in a shear coaxial injector under supercritical pressure was analyzed. To realize an efficient numerical description of the phenomena, it is important to treat the LOx jet in a manner which takes into account its real behavior. In the present work different kinetics, combustion models and thermodynamics approaches were used in association with the description of the jet as a discrete phase. For all the approaches used, a comparison with experimental data from literature was performed. Copyright © 2012 by ASME.
Spray and combustion modeling in high pressure cryogenic jet flames
De Giorgi M. G.
;Sciolti A.;Ficarella A.
2012-01-01
Abstract
The aim of the present work is the investigation of the combustion phenomenon in liquid-propellant rocket engines. The combustion of liquid oxygen and gaseous methane in a shear coaxial injector under supercritical pressure was analyzed. To realize an efficient numerical description of the phenomena, it is important to treat the LOx jet in a manner which takes into account its real behavior. In the present work different kinetics, combustion models and thermodynamics approaches were used in association with the description of the jet as a discrete phase. For all the approaches used, a comparison with experimental data from literature was performed. Copyright © 2012 by ASME.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.